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Nonstationary convective heat transfer accompanying evaporation of water from porous metaHo- 
ceramic bodies is analyzed. It is established that for low-intensity evaporation of moisture 
from thin capillary-porous bodies, the bulk evaporation model agrees well with experiment. 

Transpiration cooling is currently widely used in various fields of engineering. To ensure reliable 
and efficient operation of a cooling system, it is necessary to know its working parameters and their varia- 
tion as a function of the he~t- and mass-transfer characteristics. The characteristics of this process in the 
stationary state have been studied quite well [I]. The problems of nonstationary convective heat transfer 
in transpiration cooling have not been adequately studied. Nonstationary heat transfer occurs in transpira- 
tion cooling systems with cyclical input of water into the porous element, as well as at the initial and final 
periods of their operation. These problems have been examined mainly for the process of drying of capillary- 
porous materials [2, 3]. In so doing, it is noted th,~t the nature of the drying process is determined by the 
method and intensity of energy input to the material and its thermophysical, structural, and geometrical 
parameters. External heat transfer from moist porous bodies as they dry has been studied primarily for 
forced convective and radiative methods for introducing energy into the material. For the conductive method, 
under conditions of natural convection and especially at low pressures, nonstationary convective heat transfer 
in transpiration cooling has practically not been examined. 

In what follows, we investigate the effect of the moisture content of the capillary-porous body on external 
convective heat transfer with conductive energy input for different pressures of 'the surrounding medium and 
for different thermal loads. In [3], conductive drying of porous bodies is examined when the evaporation of 
moisture occurs from all sides of 'the drying m~terial. We, however, investigate the removal of liquid from a 
metalloceramic porous plate as applied to transpiration cooling, when evaporation of moisture occurs only 
from the external side of 'the plate, while the i~ternal surface remains sealed from the surrounding medium and 
is in contact with the surface of the heater (Fig. i). 

A titanium metalloeeramic plate (6 = 3.2"10 -3 m; D = 0.13 m; d = 5.10 -6 m; II = 0.3) was placed in a ther- 
mally insulated metallic housing. A 'thin fiat electric heater with the same shape and size as the porous plate 
was mounted in the backing. The experimental model of the porous evaporator was placed on scales in a va- 
cuum chamber. The fluid (distilled water) entered along distributing channels beneath the plate and saturated 
it uniformly to maximum moisture content Umax. The experiment consisted of several series, corresponding 
to different heat flows from the hegter (qex = (0.5-6) "103 W/m2) and pressures of the surrounding medium (P = 
(0.038-10).104 N/m2). Prior to each series of measurements, a stationary heat-transfer regime was attained 
by repeated saturation of the porous plate with the liquid. The series of measurements consisted of synchro~- 
nously measuring the indications of the scales, the heat flux sensors, and the copper-constantan thermo- 
couples, affixed to the inner and outer surfaces of the porous plate, as well as in the surrounding medium far 
from the plate, from the time of maximum saturation of the plate to its complete drying. The error in deter- 
mining the temperature did not exceed 6 %. 

Figure 2 shows some of the experimental results. As is evident from the figure, the time dependences 
of the temperature and mofsture content of the porous plate are analogous to the corresponding dependences 
presented in [3]. Here the moisture content is taken to mean the ratio of the quantity of liquid contained in the 
plate to the maximum quantity of liquid with which it is possible to saturate the plate. As in [3], periods of 
constant and decreasing rates of evaporation are observed (Ucr = 20%). For the same heater power, as the 
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Fig. I. Formulation of the problem of nonstationary transpiration cooling 
of a porous plate. 

Fig. 2. Dependence of the moisture content U (%) and temperature T (~ 
of a plate on the time ~- (sec) during nonstationary transpiration cooling un- 
der different pressures of the surrounding medium P (N/m2): i) 1"105; 2) 
8.103 and the power of the heater is Q = 14.8 (W). 

pressure of the medium in the chamber decreases, the rate of increase in temperature and the drop in the 
rate of evaporation increase due to 'the increase in heat flux going into evaporation of the liquid. In addition, 
for moisture content U = 20-5%, the temperature differential on the plate decreases, which is apparently due 
to the change in the process of evaporation of moisture from the porous plate during this time (onset of the 
bulk evaporation regime over the entire thickness of the plate). 

The coefficients of convective heat transfer of the external surface of the plate to the medium were de- 
termined from the energy balance equation for the plate 

C dT 
q = r / - 5  S d~ @ ~c~ T~) @ qrad, (1) 

where all three known forms of heat transfer are included. Figure 3 shows the experimental dependences of 
(~ con on U for the porous plate studied (curves i, 2), obtained from data in Fig. 2. The error in determining 
~con in this case did not exceed 15%. The curves of (~eon(U) obtained are analogous to the corresponding 
curves in [2]. Therefore, the introduction of energy into the thin-walled porous body does not affect the form 

of the  function ~ con(U). 

An attempt is made in [4] to apply the generalized theory of the steady-state thermal regime [5] to cal- 
culate C~con for the process of drying moist bodies. This theory is not applicable in our case (conductive 
energy input). As demonstrated in [5], the generalized steady-state theory can be used only for heating 
(cooling) of bodies that contain sources (sinks) of heat with constant power. In a period of decreasing rate of 
drying, the temperature of the body increases and the rate of evaporation decreases. This means that the 
magnitude of the heat flux going into heating the body is variable (increases) due to the variable (decreasing) 
rate of evaporation during this period. Thus, the power of the internal heat source is a variable quantity, 
which leads to a time-dependent rate of heating of the body. Therefore, the steady-state theory is not appli- 

cable in our case. 

It is well known [3] that two different drying regimes can be realized depending on the method for intro- 
ducing energy, the magnitudes of the evaporation rate, thickness of the dried material, and its thermophysical 
and structural parameters: bulk evaporation moisture and a regime accompanied by recession of the evapora- 
tion zone into the body. The first regime occurs with low-intensity drying of thin finely dispersed materials, 
especially with uhf energy input. The second regime is characteristic of high intensity drying of thin-walled 
bodies, especially with convective and conductive methods of energy input. 

Evaporation of liquid coolant in the porous structure greatly affects the reliability and efficiency of the 
process of transpiration cooling. It is known, for example, that the regime in which the phase transition sur- 
face recedes into a homogeneous porous wall results in instability of the transpiration cooling process when 
water is used as the coolant [6]. The problem of the stability of this process has now been solved by increas- 
ing the hydraulic resistance of the wall (use of a two-layer porous structure) [7]. However, this problem can 
apparently be solved in a simpler manner by eliminating the reason for the instability: recession of the evapora- 
tion surface into the porous wall. This can be achieved by realizing bulk evaporation of coolant from the porous 

structure. 
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Fig. 3. Dependence of the coefficient of convective heat 
transfer OZcon(W/m2"K) of the external surface of a moist 

porous plate on the moisture content U(%) for different 
pressures of the surrounding medium P (N/m2): I) 1.105; 
If) 8.103 andheater power Q =14.8 (W)" i, 2) experiment; 
3, 4) cal culation according tothe bulk evaporation model; 

5, 6) calculation using the model of a recessed evaporgtion 
surface. 

To clarify the true physical picture of evaporation of fluid from a porous plate, we shall examine two 
limiting computational models of the process, describing both of the regimes noted above, in application to 
our problem. It is assumed that the temperatures of the liquid (vapor) and the framework of the plate at any 
point of the plate volume are equal and that the time derivative of the temperature of the plate is independent 
of the coordinate y for thin bodies (see Fig. I). 

The first computational model of bulk evaporation of fluid from_ a plate in our case (Fig. I) is described 
by the following differential equation of heat balance 

OT OZT rmma x dU . OT 
cp - -  = ~ i- ivCv _ _ ,  (2) 

O~ 8g ~ g m Oy 

w h e r e  

C mf -}- m~ @ m v 
c = ,  �9 C = c f m f  q - c zm  ~ @Cvmv; p =  - -  ; V = 6 S .  (3) 

~V ' V 

Writing the starting equation in the form (2), we thereby assume that the rate of decrease of moisture mma x 
(dU/dT) at any time is independent of the coordinate y. This assumption for this problem is physically com- 
pletely justified since the heat flux q is oriented in the same direction as the vapor flux (Fig. I). Thermo- 
diffusion of moisture in a thin plate can be neglected since the temperature differential over the plate is insig- 
nificant. Redistribution of moisture within the plate due to capillary forces during drying is neglected. There- 
fore, the phase transformation criterion g = i [3]. The magnitude of the specific flow rate of vapor Jr, enter- 
ing into Eq. (2), depends not only on the time "r, but also on the coordinate y. It is not difficult to establish 
that at any time Jv depends linearly on the coordinate y: 

J v -- mmax dU 
V d~ g < 0 .  (4) 

Substituting (3) and (4), after transformations, we obtain the starting differential equation for heat transport 
in the plate for our problem according to the model of bulk evaporation of moisture: 

aT XV c)ZT rmma ~ dU cv~n,r dU OT (5) 
'~ g---C--" Ox C Og 2 C dT C & cg 

The thermophysical parameters of the plate framework and of the fluid and its vapor are assumed to be 
independent of temperature. The coefficient of thermal conductivity k of a moist porous plate, depending on 
its moisture content, is determined experimentally using the technique developed in [8]. Equations of the form 
(5) are usually solved with the help of the Laplace transformation [9]. The solution thus obtained has a quite 
cumbersome and complicated form, which is inconvenient for practical applications. For this reason, we 
shall solve Eq. (5) for the plate under study using a simpler computational-experimental method, which con- 
sists of assuming that the time dependent parameters entering into (5) are constant quantities at all times 
and are taken from experiment (Fig. 2). Thus the solution of Eq. (5) for each time reduces to a quasistationary 
problem, which is described by a linear inhomogeneous equation of the form 

d2T dT 
----- Bg- = A, (6) 
dy 2 dy 

where 
C c)T dU 

B=B(~)-- - - .qrr~a~ dU < 0 ;  A = A ( T ) =  0--~---rm~a~ m > 0 .  
;~V d~: ;W 



The p a r a m e t e r s  A and B at each t ime are  de termined f rom exper iment .  
p rob lem a re  boundary conditions of the f i r s t  kind: 

y = 0 ,  T = T v ,  y = 6 ,  T=Tin.  

The boundary conditions of the 

The genera l  solt~tion of Eq. (6), obtained with the help of the method of variat ion of a r b i t r a r y  constants,  is 
cumber some  and inconvenient to use: 

~, dy ] dy ] dr + K Jr- qJL; 

(7) 

(8) 

where  ~ = ~ e r f  ( y ~ ) .  This makes  it n e c e s s a r y  to use numer ica l  methods.  

We shall simplify the solution of Eq. (6). The corresponding homogeneous equation has the fo rm 

d20 dO - - - - B y  = O. 
dfi dy 

We shall p resen t  the genera l  solution of Eq. (9): 

O= Lo ~ exp ( -~  y~)dy-t - Ko. 

(9) 

(io) 

Weexpand  exp/--~--y2 ) in a Tay lo r  s e r i e s  and re ta in  the f i r s t  two t e r m s  in the ser ies .  This simplification, 

even for  maximum ra tes  of evaporat ion in drying cap i l la ry-porous  bodies,  gives an e r r o r  that does not exceed 
0.2%. As a resu l t  of the simplif icat ion made,  a f te r  appropr ia te  operat ions ,  we obtain the general  solution of 
Eq. (6) in analytic form:  

T =  A V'  2B (y@ B , I @Y V --2 -- A ._}_ 2 --~Y21 (y @__Uy3) _}_K ' ] In - - - + L B (11) 

The integrat ion constants K and L are  de te rmined  f ro m  the botmdary conditions (7), which at each t ime 
a re  known f rom exper iment .  The heat balance condition is sat isf ied on the external  surface  of the porous  
plate:  

)~ (Wy=0dT) = acor~Tex---- T=) -}- qrad" (12) 

We then wri te  the coefficient  of external  convective heat t r a n s f e r  fo r  each t ime as 
dT 

)~ (--~-g)p=0 -q rad  )~L_ q.ra d 
con Tex-- T~ Tex-- T| 

(13) 

It should be noted that this  model for  calculating a con is fu r the r  simplif ied if convective heat t r a n s f e r  
by vapor  is  neglected.  This assumption is complete ly  just if ied for  thin-walled cap i l la ry-porous  bodies. In 
'this case,  the las t  t e r m  on the right side of Eq. (5) is el iminated.  Then the problem reduces  to solving the 
l inear  inhomogeneous equation 

d2T -- A. 
dfi 

I ts  genera l  solution has the fo rm 
T =  A --7.q~ + K y + L, 

where  K and L a re  de te rmined  f rom (7): 

L -- eTx' K = Tin - Te~'-- ~.~i_22 . 
6 

(i4) 

(i5) 

(16) 
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Fig. 4. Dependence of the coefficient of convective 
heat transfer c~ con(W/m2"K) of the external surface 
of a moist porous plate on the moisture content U(%) 
with the surrounding medium at atmospheric pros- 
sure and heater power Q = 30 (W): I) experiment; 2) 
calculation using the bulk evaporation model; 3) cal- 
culation using the model with recessed evaporation 
surface. 

The expression for a con in this case is written as follows: 

~" (Tin-- Tex - -  A62/2) - -  6qrad (1'7) 
ac~ 6 (To• T.)  " 

A calculation to ver i fy  the quantity ~eon f ro m  express ions  (13) and (17) fo r  the porous  plate under study 
conf i rmed the validity of the assumption made above. Using the exper imenta l  resu l t s  (Fig. 2), the values of 
C~oo n were  oalcul~ted using express ion  (17) (curves 3 and 4 in Fig. 3). As is  evident f r o m  Fig. 3, the nature  
of 'the dependence a con(U), obtained for  the working model of butk evaporat ion,  is  analogous to the nature  of 
'the experimental dependence c~ con(U), but the computed values of o~ con are somewhat gre~ter �9 the corres- 
ponding experimental values. 

The second limiting working model of evaporation of fluid from a porous plate, which accounts for the 
recession of tlhe surface of evaporation (see Fig. i), is analogous to Stefan's problem [I0] in our case and it 
is described by two differential equations for heat transfer: 

region 1 

region 2 

OT OZT, mma~C v dU O T 1 .  (18) 

6 ~ g ~ h ,  p~c2 0T ~2 a2T~ 
O,; @2 

which a re  solved by the computa t iona l - expe r imen ta l  method descr ibed  above and a f t e r  t rans format ions  a re  
put into the fo rm 

where  

O ~ y ~ h, dZT1 B1 dT1 _ A t ,  
dyZ dy 

h ~ g ~ 6, d2T2 = A2, 
dy 2 

(i9) 

A1 = A1 (~) 

A2 = A~ 0:) 

CIO~F/O_____~_~ . >  O, B1 = BI (T,) -- cvhmmax dU <2 O, 

> O, C1 = cfmfi~ -~ Cvmi~, C 2 = cfmf~ q- e l m l , 
x2v~ 

v i  = hS, V~ = (6 - -  h)  S ,  h = 6 U m ~  - -  U �9 
Umax 

(20) 

(21) 

At each time, the parameters Ai, Bi, A 2 are constant quantities and are de~ermined from experiment. The 

boundary condi'tions from (20) and (21) are as follows: 
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0 ~ u  ~h ,  {.q = o, 
y h, 

h ~ y ~ 6 ,  { y = h ,  
y =  6,. 

The general  solution of Eqs. (20) and (21) has the fo rm  

T1 = Tex, (22) 
T1 = Tse; 

Tz = Tse, 
T9 = ~n" (23) 

TI - -  B1 Y + + K1 exp (Big) + L1, (24) 

T~ = + g2 + K~y + L2. (25) 

The integrat ion constax~ts K1, L1, K2, L 2 a r e  de te rmined  f rom the boundary conditions (22) and (23) and include 
the unknown t empera tu re  of the surface  of evaporat ion Tse within the plate at each t ime.  The quantity Tse  is 
de te rmined  f r om the boundary condition of the fourth kind with y = h: 

d--7/,=, +ri, (26) 

where  

S - - - -~  > 0. 

After  t r ans format ions ,  we obtain f r o m  (26) using (24) and (25) an express ion  for  Tse:  

(r  - A ,  h) (8-- h) exp (Blh) Ts e = 1[- '~- ~(h- -6) -4-  -~-  ~ - - r ] ]  (6--h)@ X2Tn} [exp (Bxh) - -  1]-t-X1B1_ ~ , .  ex Bx (2 7) 
X~ [exp (B~h) - -  II + ~.1B ~ (6 - -  h) exp (B~h) 

Knowing the t e m p e r a t u r e  Tse fo r  each t ime ,  it is  possible  to find all the p a r a m e t e r s  requi red  to de termine  
a con accord ing  to the working model:  

[ dT1 \ 
"[-~g) u=0 - -  qrad _ ~ ~.l (K1B1 --  A~IB1) - -  qrad (28) 

ac~ Tex-- T~ -- Tex-- T~. 

We also note that as in the working model  of bulk evaporat ion,  fo r  thin-walled porous bodies,  convective heat 
t r a n s f e r  by vapor  can be neglected,  which s implif ies  the solution of Eq. (18). The resu l t s  of the calculation 
of the quantity a con using the model  in which the surface  of evaporat ion is  r e c e s s e d  a re  p resen ted  in Fig. 3 
(curves 5, 6). As can be seen f rom the f igure ,  the na ture  of the function acon(U) for  the working model with 
a r e c e s s e d  surface  is  analogous to the r e su l t s  obtained exper imenta l ly  in [11]. F igure  4 p resen t s  the expe r i -  
mental  and computed dependences a con (U) for  h igher  thermal  loads f rom the hea te r  with the surrounding medium 
at a tmospher ic  p r e s s u r e .  The dashed l ines  in Figs.  3 and 4 indicate the value of the coefficient  a c o  n for  a d ry  
plate.  

Comparing the exper imenta l  dependences a con(U) with the corresponding dependences obtained f rom the 
two l imit ing working models  of evaporat ion,  it  may  be concluded that  the working model of bulk evaporat ion 
of fluid f o r  a plate gives r e su l t s  that a re  c lose r  to the experimer~tal r e su l t s  than the model of evaporat ion with 
the r e c e s s e d  phase-4ransi t ion surface .  The incomplete  cor respondence  of the computational r esu l t s  using the 
bulk evaporat ion model with the exper imenta l  r e su l t s ,  which is  mainly obse rved  for  U ~- Ucr ,  is apparent ly  
explained in par t  by the exper imenta l  e r r o r  as well as  by the p re sence  of mois ture  redis t r ibut ion in the po res  
due to cap i l la ry  f o r ce s ,  which is accompanied by r ecess ion  of the evaporat ion surface  in macrocap i l l a r i e s  as 
a resu l t  of fluid pulled out of them into mic rocap i l l a r i e s .  

F o r  a h igher  t he rma l  load (rate of evaporation) (Fig. 4), the d i sagreement  between the exper imenta l  
r e su l t s  and calculat ions using the bulk evaporat ion model i nc rea se s ,  while the d isagreement  with the calcula-  
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t ions  using the model  with a r e c e s s e d  evapora t ion  sur face  d e c r e a s e s .  Never the le s s ,  the na ture  of the depen-  
dence ~ con(U), obta ined f r o m  the working model  of bulk evapora t ion ,  in cont ras t  to the model with a r e c e s s e d  
evaporation surface, remains the same as in the experiment. For U -< 5%, the experimental results and the 
computational results obtained using both models practically coincide and correspond to "dry" heat transfer. 
Thus the computational bulk evaporation model satisfactorily corresponds to the real drying process in the 
given metalloceramic plate. We can expect that this correspondence will improve with decreasing plate thick- 
ness, rate of evaporation of moisture out of the plate, and average pore size. 

The computational-experimental method presented in this paper permits automating the calculation of 
convective he~t transfer from experimental d~ta with the help of appropriate means for automating the per- 
formanee and analysis of the experiment. In so doing, ft is necessary that the working model adopted des- 
cribe sufficiently accurately the real process of evaporation of fluid from the porous body. 

NOTATION 

~con' coefficient of convective heat transfer; ~, D, and d, thickness, diameter, and average pore size 
in the pl~te, respectively; P, porosity; U, Umax, instantaneous and maximum-value of the moisture content 
of the plate, respectively; q, specific heat flux from the heater to the plate; qrad, specific radiant heat flux 
from the surrounding medium to the plate; T, temperature; T, average temperature of the plate; S, surface 
area of the plate; m, mass; p, density of the moist porous structure; e, specific heat capacity; j, specific 
rate of evaporation; 7, time; V, volume of the plate; r, specific heat of evaporation of the liquid; k, coeffi- 
cient of thermal conductivity of the plate; mmax, maximum amount of liquid with which the plate can be satur- 
ated; h, coordinate of the surface of evaporation of the pl~te; C, bulk heat capacity. The indices are as fol- 
lows: f, framework; l, liquid; v, vapor; cr, critical; ex, external surface of the plate; in, internal surface 
of the p la te ;  se ,  su r face  of evapora t ion;  ! ,  region of the f i r s t  plate;  2, region of the second plate;  and r 
surrounding m e d i u m  f a r  away f r o m  the pla te .  
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