NONSTATIONARY CONVECTIVE HEAT TRANSFER WITH
EVAPORATION OF A LIQUID FROM THIN-WALLED
CAPILLARY-POROUS BODIES UNDER CONDITIONS OF
NATURAL CONVECTION
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Nonstationary convective heat transfer accompanying evaporation of water from porous metallo-
ceramic bodies is analyzed. It is established that for low-intensity evaporation of moisture
from thin capillary-porous bodies, the bulk evaporation model agrees well with experiment.

Transpiration cooling is currently widely used in various fields of engineering. To ensure reliable
and efficient operation of a cooling system, it is necessary to know its working parameters and their varia-
tion as a function of the heat- and mass-transfer characteristics. The characteristics of this process in the
stationary state have been studied quite well [1]. The problems of nonstationary convective heat transfer
in transpiration cooling have not been adequately studied. Nonstationary heat transfer occurs in transpira-
tion cooling systems with cyclical input of water into the porous element, as well as at the initial and final
periods of their operation. These problems have been examined mainly for the process of dryingof capillary-
porous materials [2, 3]. In so doing, it is noted that the nature of the drying process is determined by the
method and intensity of energy input to the material and its thermophysical, structural, and geometrical
parameters., External heat transfer from moist porous bodies as they dry has been studied primarily for
forced convective and radiative methods for introducing energy into the material. For the conductive method,
under conditions of natural convection and especially at low pressures, nonstationary convective heat transfer
in transpiration cooling has practically not been examined.

In what follows, we investigate the effect of the moisture content of the capillary-porous body on external
convective heat transfer with conductive energy input for different pressures of the surrounding medium and
for different thermal loads. In [3], conductive drying of porous bodies is examined when the evaporation of
moisture occurs from all sides of the drying material. We, however, investigate the removal of liquid from a
metalloceramic porous plate as applied to transpiration cooling, when evaporation of moisture occurs only
from the external side of the plate, while the internal surface remains sealed from the surrounding medium and
is in contact with the surface of the heater (Fig. 1).

A titanium metalloceramic plate (6 = 3.2°102% m; D=0.13m; d = 5-10° m; I = 0.3) was placed in a ther-
mally insulated metallic housing. A thin flat electric heater with the same shape and size as the porous plate
was mounted in the backing. The experimental model of the porous evaporator was placed on scales in a va~
cuum chamber. The fluid (distilled water) entered along distributing channels beneath the plate and saturated
it uniformly to maximum moisture content Umax. The experiment consisted of several series, corresponding
to different heat flows from the heater (gex = (0.5-6)-10° W /m?) and pressures of the surrounding medium (P =
(0.038-10)-10" N/m?). Prior to each series of measurements, a stationary heat-transfer regime was attained
by repeated saturation of the porous plate with the liquid. The series of measurements consisted of synchro~
nously measuring the indications of the scales, the heat flux sensors, and the copper—constantan thermo-
couples, affixed to the inner and outer surfaces of the porous plate, as well as in the surrounding medium far
from the plate, from the time of maximum saturation of the plate to its complete drying. The error in deter-
mining the temperature did not exceed 6 %.

Tigure 2 shows some of the experimental results. As is evident from the figure, the time dependences
of the temperature and motsture content of the porous plate are analogous to the corresponding dependences
presented in [3]. Here the moisture content is taken to mean the ratio of the quantity of liquid contained in the
plate to the maximum quantity of liquid with which it is possible to saturate the plate. As in [3], periods of
constant and decreasing rates of evaporation are observed (Ucyr = 20%). For the same heater power, as the
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Fig. 1. Formulation of the problem of nonstationary transpiration cooling
of a porous plate.

Fig. 2. Dependence of the moisture content U (%) and temperature T (°K)
of a plate on the time 7 (sec) during nonstationary transpiration cooling un-
der different pressures of the surrounding medium P (N/m?): 1) 1-10%; 2)
8-10° and the power of the heater is Q = 14.8 (W).

pressure of the medium in the chamber decreases, the rate of increase in temperature and the drop in the
rate of evaporation increase due to the increase in heat flux going into evaporation of the liquid. In addition,
for moisture content U = 20-5%, the temperature differential on the plate decreases, which is apparently due
to the change in the process of evaporation of moisture from the porous plate during this time (onset of the
bulk evaporation regime over the entire thickness of the plate).

The coefficients of convective heat transfer of the external surface of the plate to the medium were de-
termined from the energy balance equation for the plate
dT
dr

. Cc
q = r] + —tg— + %OST‘eX_ T°°) + qrad) (1)

where all three known forms of heat transfer are included. Figure 3 shows the experimental dependences of
@ gop on U for the porous plate studied (curves 1, 2), obtained from data in Fig. 2. The error in determining
O cop in this case did not exceed 15%. The curves of oo, (U) obtained are analogous to the corresponding
curves in [2]. Therefore, the introduction of energy into the thin-walled porous body does not affect the form
of the function o ¢on(U).

An attempt is made in [4] to apply the generalized theory of the steady-state thermal regime [5] to cal-
culate o gopn for the process of drying moist bodies. This theory is not applicable in our case (conductive
energy input). As demonstrated in [5], the generalized steady-state theory can be used only for heating
{cooling) of bodies that contain sources (sinks) of heat with constant power. In a period of decreasing rate of
drying, the temperature of the body increases and the rate of evaporation decreases. This means that the
magnitude of the heat flux going into heating the body is variable (increases) due to the variable (decreasing)
rate of evaporation during this period. Thus, the power of the internal heat source is a variable quantity,
which leads to a time-dependent rate of heating of the body. Therefore, the steady-state theory is not appli-
cable in our case.

It is well known [3] that two different drying regimes can be realized depending on the method for intro-
ducing energy, the magnitudes of the evaporation rate, thickness of the dried material, and its thermophysical
and structural parameters: bulk evaporation moisture and a regime accompanied by recession of the evapora-
tion zone into the body. The first regime occurs with low-intensity drying of thin finely dispersed materials,
especially with uhf energy input. The second regime is characteristic of high intensity drying of thin-walled
bodies, especially with eonvective and conductive methods of energy input.

Evaporation of liquid coolant in the porous structure greatly affects the reliability and efficiency of the
process of transpiration cooling. It is known, for example, that the regime in which the phase transition sur-
face recedes into a homogeneous porous wall results in instability of the transpiration cooling process when
water is used as the coolant [6]. The problem of the stability of this process has now been solved by increas-
ing the hydraulic resistance of the wall (use of a two-layer porous structure) [7]. However, this problem can
apparently be solved in a simpler manner by eliminating the reason for the instability: recession of the evapora-
tion surface into the porous wall. This can be achieved by realizing bulk evaporation of coolant from the porous
structure.
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Fig. 3. Dependence of the coefficient of convective heat
transfer o qon(W/ m?K) of the external surface of a moist
porous plate on the moisture content U(%) for different
pressures of the surrounding medium P (N/m?): 1) 1-10°%;
II) 8-10° and heater power Q@ =14.8 (W): 1, 2) experiment;
3, 4) calculation according to the bulk evaporation model;

5, 6) calculation usingthe model of a recessed evaporation
surface.

To clarify the true physical picture of evaporation of fluid from a porous plate, we shall examine two
limiting computational models of the process, describing both of the regimes noted above, in application to
our problem. It is assumed that the temperatures of the liquid (vapor) and the framework of the plate at any
point of the plate volume are equal and that the time derivative of the temperature of the plate is independent
of the coordinate y for thin bodies (see Fig. 1).

The first computational model of bulk evaporation of fluid from a plate in our case (Fig. 1) is described
by the following differential equation of heat balance

2
0 3 0T | Maw AU, 0T ©)
o7 a0y V dt oy
where
C ) ms -+~ my; 4-m
0=7§ﬂC=q%+gmz+mmp=—i~ﬁi;i;V=w~ (3)

Writing the startfing equation in the form (2), we thereby assume that the rate of decrease of moisture my,
(dU/d7) at any time is independent of the coordinate y. This assumption for this problem is physically com-
pletely justified since the heat flux g is oriented in the same direction as the vapor flux (Fig. 1). Thermo-
diffusion of moisture in a thin plate can be neglected since the temperature differential over the plate is insig-
nificant. Redistribution of moisture within the plate due to capillary forces during drying is neglected. There-
fore, the phase transformation criterion ¢ =1 {3]. The magnitude of the specific flow rate of vapor j,, enter-
ing into Eq. (2), depends not only on the time 7, but also on the coordinate y. It is not difficult to establish
that at any time jy depends linearly on the coordinate y:

Mupax QU (4)

—— y<<O.
4 dv ¥

Substituting (3) and (4), after transformations, we obtain the starting differential equation for heal fransport
in the plate for our problem according to the model of bulk evaporation of moisture:

iy=

3
7

oT AV T rmpae AU Cylgax AU ar (5)

x € op c & ¢ & Ty

The thermophysical parameters of the plate framework and of the fluid and its vapor are assumed fo be
independent of temperature. The coefficient of thermal conductivity » of a moist porous plate, depending on
its moisture content, is determined experimentally using the technique developed in [8]. Equations of the form
(5) are usually solved with the help of the Laplace transformation [9]. The solution thus obtained has a quite
cumbersome and complicated form, which is inconvenient for practical applications. For this reason, we
shall solve Eq. (5) for the plate under study using a simpler computational-experimental method, which con-
sists of assuming that the time dependent parameters entering into (5) are constant quantities at all times
and are taken from experiment (Fig. 2). Thus the solution of Eq. (5) for each time reduces to a quasigtationary
problem, which is described by a linear inhomogeneous equation of the form

ET g, ATy, (6)
dy? dy
her
where o7 du
Copas AU Yy et
B=B(t)="v"28% "7 0, A= A(1)= >0,
® AV dr ® %
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The parameters A and B at each time are determined from experiment. The boundary conditions of the
problem are boundary conditions of the first kind:

y=0, T=T,, y=8§, T=71,. (")

The general solution of Eq. (6), obtained with the help of the method of variation of arbitrary constants, is
cumbersome and inconvenient to use:

T = ”Aj(iq-’—)_l dy]d(p+1<+ oL; (8)
dy

where ¢ = v —n/2B erf(yv —B72). This makes it necessary to use numerical methods.
We shall simplify the solution of Eq. (6). The corresponding homogeneous equation has the form

PO do
— By ——— = 0. (9
dy? y dy )
We shall present the general solution of Eq. (9):
B
o= Loj exp(T yZ) dy + Ko (10)

B - ; . .
We expand exp (—2— yz) in a Taylor series and retain the first two terms in the series. This simplification,

even for maximum rates of evaporation in drying capillary-porous bodies, gives an error that does not exceed
0.2%. As a result of the simplification made, after appropriate operations, we obtain the general solution of

Eqg. (6) in analytic form:
B
1+y)/ ——5 In
4 1 B ‘/ 2 <y2 2
T=A4) ——— |1 — AL =
V — 55 (y+ 5 in +—

‘B
14— 2
+5

)+L<y+—§—y3)+1<. (11)

B 6 B
=yl —=

The integration constants K and L are determined from the boundary conditions (7), which at each time
are known from experiment. The heat balance condition is satisfied on the external surface of the porous
plate:

ar
* <_dy—>y=o - %or{TEX—. Te) + Trad- (12)
We then write the coefficient of external convective heat transfer for each time as
A ( o ) — %ad
— dy Jy=o — AL —qrad ) (13)
con Tx— T T—Ta

Tt should be noted that this model for calculating @ gop is further simplified if convective heat transfer
by vapor is neglected. This assumption is completely justified for thin-walled capillary-porous bodies. In
this case, the last term on the right side of Eq. (5) is eliminated. Then the problem reduces to solving the
linear inhomogeneous equation

&7 = A. (14)
dy?
Its general solution has the form
T=—‘42——y2+Ky+L, (15)
where K and L are determined from (7):
L=T, K= By — T — A¥/2 (16)
ex 8 °
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Fig. 4. Dependence of the coefficient of convective
heat transfer o, (W/m*K) of the external surface
of a moist porous plate on the moisture content U(%)
with the surrounding medium at atmospheric pres-
sure and heater power @ = 30 (W): 1) experiment; 2)
calculation using the bulk evaporation model; 3) cal-
culation using the model with recessed evaporation
surface.

The expression for a ,,, in this case is written as follows:

o = A (Tm—~ Téx — Ad%2) — éqrad
con 6(7éx'—'T°°)

A caleulation to verify the quantity o .., from expressions (13) and (17) for the porous plate under study
confirmed the validity of the assumption made above. Using the experimental results (Fig. 2), the values of
& gop Were calculated using expression (17) (curves 3 and 4 in Fig. 3). As is evident from Fig. 3, the nature
of the dependence ¢ qopn (U), obtained for the working model of bulk evaporation, is analogous to the nature of
the experimental dependence & 4y, (U), but the computed values of @ con are somewhat greater than the corres-
ponding experimental values.

(a7

The second limiting working model of evaporation of fluid from a porous plate, which accounts for the
recession of the surface of evaporation (see Fig. 1), is analogous to Stefan's problem [10] in our case and it
is described by two differential equations for heat transfer:

region 1
h>y>0, oo 2L =3, Pl _ Mmacy dU - 0T, | (18)
v dy? S dv ay
region 2
T 2
S>y>h, 00 or :LzaTg , (19)
v oy?

which are solved by the computational —experimental method described above and after transformations are
put into the form

T, dT,

Osysh gy TR (20)
2
h<y<s, L4, @1)
dy?
where i
C,0T/ox o him daUu
A=A T:.._L...____.>O,B=B T.:___Vv___nﬁ_ O,
1 1( ) A,IVI 1 1( ) }\IlVI .__dv <
C.0T 8v
A2=A2(T)=‘—“‘ij'/lz‘—‘>0, C'1=cfmﬁ“+cvmv, szcfmfz+cl m,,
Vim S, Va=(8—1)8, h=bLox=C

max

At each time, the parameters A;, B;, A, are constant quantities and are determined from experiment. The
boundary conditions from (20) and (21) are as follows:
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0<y <h, {y=°’ Ti=T, (22)
y=h: T1=Tlse;-

hy<C§, {y=h’ Ty=Te ,
y= 6:. T2 = ?I]' (23)

The general solution of Eqs. (20) and (21) has the form

Ty=— 21 (y +— ) + Kyexp (By) + Ly, 24)
1 B,
4,
Ty= ¥: + Koy + L. (25)

The integration constants K;, Ly, Ky, L, are determined from the boundary conditions (22) and (23) and include
the unknown temperature of the surface of evaporation Tge within the plate at each time. The quantity Tge is
determined from the boundary condition of the fourth kind with y = h:

d
NEARNING Cp )
dy )y=n dy Jy=n
where
: mn;ax dU
= Mmax |4V o,
! s | & |7

After transformations, we obtain from (26) using (24) and (25) an expression for Tgg:

1 A 4, .
B ”-E—M(h— 8) + —Bl_ M — r]] (6’— h) 4- Mli"n} [exp (Bh) — 1] + )»11-31 (Tex———%~ h) (6f—h) exp (Bsh)

1

27

e Mg [exp (Bih) — 1] - MB, (8 — h) exp (B,4)

Knowing the temperature Tgg for each time, it is possible to find all the parameters required to determine
Qeon according to the working model:

dT
n (20 ) - _
_ 1 ( dy | y=o Tra _ M (KB — AYB) — 4149 . (28)
ton T, —Ta , Tex— T

We also note that as in the working model of bulk evaporation, for thin-walled porous bodies, convective heat
transfer by vapor can be neglected, which simplifies the solution of Eq. (18). The results of the calculation

of the quantity o qop using the model in which the surface of evaporation is recessed are presented in Fig. 3
(curves 5, 6). As can be seen from the figure, the nature of the function a4y, (U) for the working model with
a recessed surface is analogous to the results obtained experimentally in [11]. Figure 4 presents the experi-
mental and computed dependences ooy (U) forhigher thermal loads from the heater with the surrounding medium
at atmospheric pressure. The dashed lines in Figs. 3 and 4 indicate the value of the coefficient & ooy for a dry
plate.

Comparing the experimental dependences « ., (U) with the corre sponding dependences obtained from the
two limiting working models of evaporation, it may be concluded that the working model of bulk evaporation
of fluid for a plate gives results that are closer to the experimental results than the model of evaporation with
the recessed phase-transition surface. The incomplete correspondence of the computational results using the
bulk evaporation model with the experimental results, which is mainly observed for U = U, is apparently
explained in part by the experimental error as well as by the presence of moisture redistribution in the pores
due to capillary forces, which is accompanied by recession of the evaporation surface in macrocapillaries as
a result of fluid pulled out of them into microcapillaries.

For a higher thermal load (rate of evaporation) (Fig. 4), the disagreement between the experimental
results and calculations using the bulk evaporation model increases, while the disagreement with the calcula-
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tions using the model with a recessed evaporation surface decreases. Nevertheless, the nature of the depen-
dence a ooy (U), obtained from the working model of bulk evaporation, in contrast to the model with a recessed
evaporation surface, remains the same as in the experiment. For U =< 5%, the experimental resuits and the
computational results obtained using both models practically coincide and correspond to "dry" heat transfer.
Thus the computational bulk evaporation model satisfactorily corresponds to the real drying process in the
given metalloceramic plate. We can expect that this correspondence will improve with decreasing plate thick-~
ness, rate of evaporation of moisture out of the plate, and average pore size.

The computational —experimental method presented in this paper permits automating the calculation of
convective heat transfer from experimental data with the help of appropriate means for automating the per-
formance and analysis of the experiment. In so doing, it is necessary that the working model adopted des-
cribe sufficiently accurately the real process of evaporation of fluid from the porous body.

NOTATION

®oon? coefficient of convective heat transfer; ¢, D, and d, thickness, diameter, and average pore size
in the plate, respectively; P, porosity; U, Upmgy. instantaneous and maximum value of the moisture content
of the plate, respectively; q, specific heat flux from the heater to the plate; q,,q, specific radiant heat flux
from the surrounding medium to the plate; T, temperature; T, average temperature of the plate; 8, surface
area of the plate; m, mass; p, density of the moist porous structure; ¢, specific heat capacity; j, specific
rate of evaporation; 7, time; V, volume of the plate; r, specific heat of evaporation of the liquid; A, coeffi-
cient of thermal conductivity of the plate; m, ., maximum amount of liquid with which the plate can be satur-
ated; h, coordinate of the surface of evaporation of the plate; C, bulk heat capacity. The indices are as fol-
lows: f, framework; I, liquid; v, vapor; cr, critical; ex, external surface of the plate; in, internal surface

of the plate; se, surface of evaporation; 1, region of the first plate; 2, region of the second plate; and =,
surrownding medium far away from the plate.
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